
Smart Controller – Artist Talk

Angelo Fraietta

PO Box 859, Hamilton NSW, 2303
email: angelo_f@bigpond.com

Abstract
The Smart Controller is a portable hardware device
that allows performers to create music using
Programmable Logic Control. The device can be
programmed remotely through the use of a patch
editor or Workbench, which is an independent
computer application that simulates and
communicates with the hardware. The Smart
Controller responds to input control voltage and
MIDI messages, producing output control voltage
and MIDI messages (depending upon the patch). The
Smart Controller is a stand alone device -- a
powerful, reliable, and compact instrument --
capable of reducing the number of electronic modules
required, particularly the requirement of a laptop
computer, in a live performance. This talk will detail
the progress of the project.

1 Introduction
I discussed the Smart Controller at Waveform

2001 (Fraietta 2001), explaining the methodology
whereby I was able to develop the software for the
Smart Controller using a desktop computer as a
hardware simulator. The research, however, had to
eventually lead me to the development of a physical
hardware device (otherwise the Smart Controller
would always remain a theoretical device), which in
turn spawned two other products that have
commercial potential, enabling the research to partly
fund itself before its completion. Brief details of these
products will be given later in the document.

The last year has been quite successful in that I
have been able to develop a prototype of the Smart
Controller in a stand-alone box. The other side of the
coin, however, is that this research has been
extremely taxing – mentally, emotionally, and
spiritually -- in that there were many problems that
occurred that made it look as if the project was
doomed to failure; however, the people
acknowledged at the end of this paper helped to
ensure this was not the case.

2 The Resource Model
I had originally intended using a PC-104

embedded PC to run the Smart Controller under
RTEMS. I found on the RTEMS newsgroup that a
particular PC-104 system had successfully run
RTEMS (Wasierski, 2001), and obtained the supplier
details. I found the URL describing the device
online, however when I jumped to the online catalog,
it led me to the DIMMPC. The DIMMPC evaluation
board had a PC-104 interface and so I assumed this
was the device I required. I bought the evaluation
board and DIMMPC (costing approximately $1300
after shipping, customs and GST), and upon opening
the box found that I did not get a PC-104 single board
computer at all -- the DIMMPC was a whole 386 PC
motherboard on a single chip. I had originally
intended returning the items, however, after
connecting the evaluation board to a monitor and
power supply, I found that I was able to run the Smart
Controller software on it with no problems at all.
This effectively gave me a smaller device, however, I
had to design a circuit board and obtain the 144-pin
socket to mount the chip. This has now turned out to
be a very cost effective and space efficient alternative
to the PC-104 system that I had originally intended.
Additionally, an advantage of this system is that
someone can upgrade to a faster CPU simply by
replacing the chip – a viable alternative if I choose to
make the Smart Controller perform DSP.

The next stage in the development was the
implementation of the MIDI and control voltage I/O.
I implemented this using the 16F877 PIC
microcontroller. NKA (formally Neil Kilgour and
Associates) provided me with parts, development
tools, and engineering advice at no cost, thus making
this stage of development relatively painless. I
designed the circuit board as a separate module to the
Smart Controller CPU, thus enabling the board to be
used as a standalone CV to MIDI / MIDI to CV
controller, without the Smart Controller. I originally
offered these on the ACMA post at cost, however, I
received a lot of negative feedback, particularly as I
did not offer an option to configure the device. I
found that I was able to store configuration data
within the EEPROM of the device, and as such was
able to configure the device using software through

the MIDI ports. What has eventuated from this is that
I now have a fully configurable CV (control voltage)
to MIDI / MIDI to CV controller available for sale at
a very competitive price. These devices are now sold
internationally via the Internet. This is the first
example of the Smart Controller research obtaining a
source of funding generated from technology
developed before the project’s completion. The
devices have been designed so they can be easily
upgraded to a Smart Controller later.

A multi-object file stream developed for
communication with the external Patch Editor
became another source of funding. Quikscribe
adopted this steaming methodology for their Digital
Transcribing, whereby they have created an
Intelligent Audio File (IAF).

The .iaf (Intelligent Audio File) provides the Quikscribe
Transcription System with a powerful "unique
advantage". Rather than just being able to record, edit
and transcribe audio files, the .iaf (Intelligent Audio
File) provides Quikscribe with the ability to offer a lot
of advanced features, not currently available in any
other dictation/transcription product. For example,
Quikscribe is able to insert Text Attachments, capture
Screen Shots and insert File Attachments. It also has a
powerful Built-in Database for management purposes.
Lastly it can record, edit (Undo or Redo) and compress
audio in real-time. (Quikscribe, 2002)

Apart from the financial benefits, this has led to
the satisfaction of providing solutions for industries
outside of Creative Arts.

The next stage in development was the
intercommunication between the PIC I/O card and the
386 Smart Controller card. Communication between
the two boards was achieved by using a PLA
(programmable logic array), which communicated
with the 386 in a parallel data stream, while
communicating with PIC using a serial data stream.
In developing this area, I found that there were many
areas that errors could and did occur, which had to be
identified and corrected. The biggest problem,
however, was the speed of the data interchange
between the two boards. The maximum acceptable
interchange between the two boards must be no
greater than 320 microseconds as this was the
maximum MIDI transfer rate. I was unable, however,
to get the rate below 450 microseconds on the
DIMMPC, which in turn caused the device to lose
MIDI data bytes. I created this situation by sending
continuous sysex blocks of 1024 bytes into the device
from my PC MIDI output – this caused a MIDI
overflow to occur. I ultimately had to reduce the
amount of time in the interrupt and the data exchange.
Joel Sherrill asked “Aren't you down to the point of
counting instructions?” (Sherrill, 2002) I thought that
this was some sort of programmer’s figure of speech,
however, I found out that this was exactly what was
required – I had to actually count the number of CPU

instructions that were taking place in the exchange. I
performed this by stepping through the code in the
MPLAB simulator and was able to reduce the time by
implementing some methods in the PIC that are
normally considered poor programming practice. The
first methods I used were implementing global
variables instead of passing function parameters, and
using “USE_FAST_IO” directives to prevent
unnecessary changes to the data direction registers.
This proved effective; however, the exchange rate
using the DIMMPC was still 370 microseconds – 50
microseconds too slow. The next method I used was
actually counting the instructions using the MPLAB
simulator and comparing my “C” code with the
compiler generated assembly code. Consider the
following code fragment, which writes the most
significant bit of a variable to a pin of the PIC.

output_bit (SPI_PLA_DATA, pla_out_data.flags
& 0x80);

This fragment took five machine cycles to
execute. The following fragment performs the same
function, however, only taking three cycles.

if (bit_test (pla_out_data.flags, 7))
 {
 output_bit (SPI_PLA_DATA, 1);
 }
 else
 {
 output_bit (SPI_PLA_DATA, 0);
 }

This saving of two instructions actually becomes
a saving of sixty-four instructions as the code is
executed thirty-two times per exchange. The biggest
saving, however, was in the omission of “for” loops
in the exchange. The following statement causes the
code within the loop to be executed eight times.

for (byte_num = 0; byte_num < 8; byte_num++)

The problem with the code, however, is that it
takes ten cycles every time to perform that line of
code, which becomes an eighty machine cycle
overhead to the loop. This type of iteration is
performed four times per exchange, becoming 320
machine cycles of overhead, which translates to
eighty microseconds per exchange. I overcame this
by placing the code from the block within the “for”
loop into inline functions, and literally called them
each eight times. These changes enabled the
exchange between the two processors to take place in
250 microseconds – well within the required time.
This, however, produced another problem – the speed
was now too fast in that sometimes the 386 did not
sense the interrupt, which in turn caused a lock up
when there was no MIDI or CV input at the PIC. This
problem was overcome without too much difficulty.

The next problem encountered caused me the
greatest distress in the entire project to date. I had the
simulator on the Windows machine running well for
over a year, however, attempting to run some patches
on the RTEMS machine would create access
violations that caused the machine to crash if I
clicked madly on the Patch Editor. I searched for
days, unable to find where the problem in the code
could be. The whole point of the simulator was that
the majority of the code was identical, and so it
would be easy to find the problems by debugging the
Windows machine. The problem, however, was that
it would not crash on the Windows machine. After
three days of intense debugging, I was physically ill
from the stress. That night, I cried out in anguish
“Lord, I can’t find it! It is beyond me. You have to
show me where the problem is.” The next day I sat
down at the computer and started clicking madly on
the Windows Patch Editor. Almost immediately, I
received a Code Guard error message. Code Guard
generated a report to a text file that actually showed
me lines of code that had the error. This was
miraculous! The error had been in my code for more
than a year; however, it did not show itself until that
moment. The reason that it occurred so regularly on
the RTEMS machine was because the code runs
faster in RTEMS on a 40MHz 386 than it does on a
Windows 2000 machine running at 1.133GHz. This
supports the concept that a machine designed
specifically for this purpose would probably be more
effective as an instrument than a laptop or desktop
computer running software -- such as Max, PD, or
Algorithmic Composer -- because the specific
machine does not have to waste time performing
unnecessary operations such as updating displays,
servicing the many tasks that the operating system
starts up, etc… , but rather allocates CPU resources
only where they are required. I have been able to
make the Smart Controller generate a 50 HZ square
wave by toggling the digital output every ten
milliseconds using a metronome object, while at the
same time generating 100 MIDI messages per second
out of each of its MIDI output ports. I have measured
the digital waveform with an oscilloscope and was
surprised to find that the pulses were exactly 10
milliseconds wide – I would not expect to see this
level of accuracy using a non-dedicated device.

3 Conclusion
The Smart Controller is now at a stage where it

could actually be used in an installation or
performance. There are, however, still more features
that I would like to add to the hardware device such
as non-volatile storage and retrieval of last loaded
patch in the case of a power outage at an installation.
Additionally, I must now commence work on the

patch editor in order to make it run on multiple
platforms. I hope to have prototypes of the Smart
Controller available for testing by the beginning of
2003, and hopefully, presenting the device at the
International Computer Music Conference (ICMC)
next year.

4 Acknowledgments
I would like to firstly give thanks to God in that

His grace and mercy “delivered me from the paw of
the lion”(Holy Bible 1978, I Samuel 17:37) in that it
was often not until I broke down and specifically
asked for His help did the solutions to the problems
become revealed; to Neil Kilgour for generously
providing parts, equipment, and technical advice; and
to all the people who participate on the RTEMS users
group.

References
Fraietta, A. 2001. “Smart Budgeting for a Smart

Controller.” Proceedings of Waveform 2001 --
Australasian Computer Music Association Conference.
Australasian Computer Music Association, pp. 43-47.

Holy Bible. New International Version. 1978. New York:
International Bible Society.

Quikscribe. 2002 “iaf (Intelliogen Audio File.”
http://www.quikscribe.com.au/PopUps/iaf.htm.

Sherrill, J. 2002. “Re: Interrupts occurrence.” RTEMS User
Newsgroup Archives,
http://www.oarcorp.com/rtems/maillistArchives/rtems-
users/2002/march/msg00210.html

Wasierski, R. 2001. “Re: PC-104.” RTEMS User
Newsgroup Archives,
http://www.oarcorp.com/rtems/maillistArchives/rtems-
users/2001/august/msg00129.html

