[PATCH 40/45] timecounter: Import from FreeBSD

Sebastian Huber sebastian.huber at embedded-brains.de
Fri May 15 11:41:40 UTC 2015


From: Alexander Krutwig <alexander.krutwig at embedded-brains.de>

Update #2271.
---
 cpukit/score/include/sys/_ffcounter.h |   42 +
 cpukit/score/include/sys/timeffc.h    |  389 +++++++
 cpukit/score/include/sys/timepps.h    |  249 ++++
 cpukit/score/include/sys/timetc.h     |   89 ++
 cpukit/score/include/sys/timex.h      |  171 +++
 cpukit/score/src/kern_tc.c            | 2039 +++++++++++++++++++++++++++++++++
 cpukit/score/src/opt_compat.h         |    0
 cpukit/score/src/opt_ffclock.h        |    0
 cpukit/score/src/opt_ntp.h            |    0
 9 files changed, 2979 insertions(+)
 create mode 100644 cpukit/score/include/sys/_ffcounter.h
 create mode 100644 cpukit/score/include/sys/timeffc.h
 create mode 100644 cpukit/score/include/sys/timepps.h
 create mode 100644 cpukit/score/include/sys/timetc.h
 create mode 100644 cpukit/score/include/sys/timex.h
 create mode 100644 cpukit/score/src/kern_tc.c
 create mode 100644 cpukit/score/src/opt_compat.h
 create mode 100644 cpukit/score/src/opt_ffclock.h
 create mode 100644 cpukit/score/src/opt_ntp.h

diff --git a/cpukit/score/include/sys/_ffcounter.h b/cpukit/score/include/sys/_ffcounter.h
new file mode 100644
index 0000000..0d5864a
--- /dev/null
+++ b/cpukit/score/include/sys/_ffcounter.h
@@ -0,0 +1,42 @@
+/*-
+ * Copyright (c) 2011 The University of Melbourne
+ * All rights reserved.
+ *
+ * This software was developed by Julien Ridoux at the University of Melbourne
+ * under sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS__FFCOUNTER_H_
+#define _SYS__FFCOUNTER_H_
+
+/*
+ * The feed-forward clock counter. The fundamental element of a feed-forward
+ * clock is a wide monotonically increasing counter that accumulates at the same
+ * rate as the selected timecounter.
+ */
+typedef uint64_t ffcounter;
+
+#endif /* _SYS__FFCOUNTER_H_ */
diff --git a/cpukit/score/include/sys/timeffc.h b/cpukit/score/include/sys/timeffc.h
new file mode 100644
index 0000000..3bda5d4
--- /dev/null
+++ b/cpukit/score/include/sys/timeffc.h
@@ -0,0 +1,389 @@
+/*-
+ * Copyright (c) 2011 The University of Melbourne
+ * All rights reserved.
+ *
+ * This software was developed by Julien Ridoux at the University of Melbourne
+ * under sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS_TIMEFF_H_
+#define _SYS_TIMEFF_H_
+
+#include <sys/_ffcounter.h>
+
+/*
+ * Feed-forward clock estimate
+ * Holds time mark as a ffcounter and conversion to bintime based on current
+ * timecounter period and offset estimate passed by the synchronization daemon.
+ * Provides time of last daemon update, clock status and bound on error.
+ */
+struct ffclock_estimate {
+	struct bintime	update_time;	/* Time of last estimates update. */
+	ffcounter	update_ffcount;	/* Counter value at last update. */
+	ffcounter	leapsec_next;	/* Counter value of next leap second. */
+	uint64_t	period;		/* Estimate of counter period. */
+	uint32_t	errb_abs;	/* Bound on absolute clock error [ns]. */
+	uint32_t	errb_rate;	/* Bound on counter rate error [ps/s]. */
+	uint32_t	status;		/* Clock status. */
+	int16_t		leapsec_total;	/* All leap seconds seen so far. */
+	int8_t		leapsec;	/* Next leap second (in {-1,0,1}). */
+};
+
+#if __BSD_VISIBLE
+#ifdef _KERNEL
+
+/* Define the kern.sysclock sysctl tree. */
+SYSCTL_DECL(_kern_sysclock);
+
+/* Define the kern.sysclock.ffclock sysctl tree. */
+SYSCTL_DECL(_kern_sysclock_ffclock);
+
+/*
+ * Index into the sysclocks array for obtaining the ASCII name of a particular
+ * sysclock.
+ */
+#define	SYSCLOCK_FBCK	0
+#define	SYSCLOCK_FFWD	1
+extern int sysclock_active;
+
+/*
+ * Parameters of counter characterisation required by feed-forward algorithms.
+ */
+#define	FFCLOCK_SKM_SCALE	1024
+
+/*
+ * Feed-forward clock status
+ */
+#define	FFCLOCK_STA_UNSYNC	1
+#define	FFCLOCK_STA_WARMUP	2
+
+/*
+ * Flags for use by sysclock_snap2bintime() and various ffclock_ functions to
+ * control how the timecounter hardware is read and how the hardware snapshot is
+ * converted into absolute time.
+ * {FB|FF}CLOCK_FAST:	Do not read the hardware counter, instead using the
+ *			value at last tick. The time returned has a resolution
+ *			of the kernel tick timer (1/hz [s]).
+ * FFCLOCK_LERP:	Linear interpolation of ffclock time to guarantee
+ *			monotonic time.
+ * FFCLOCK_LEAPSEC:	Include leap seconds.
+ * {FB|FF}CLOCK_UPTIME:	Time stamp should be relative to system boot, not epoch.
+ */
+#define	FFCLOCK_FAST		0x00000001
+#define	FFCLOCK_LERP		0x00000002
+#define	FFCLOCK_LEAPSEC		0x00000004
+#define	FFCLOCK_UPTIME		0x00000008
+#define	FFCLOCK_MASK		0x0000ffff
+
+#define	FBCLOCK_FAST		0x00010000 /* Currently unused. */
+#define	FBCLOCK_UPTIME		0x00020000
+#define	FBCLOCK_MASK		0xffff0000
+
+/*
+ * Feedback clock specific info structure. The feedback clock's estimation of
+ * clock error is an absolute figure determined by the NTP algorithm. The status
+ * is determined by the userland daemon.
+ */
+struct fbclock_info {
+	struct bintime		error;
+	struct bintime		tick_time;
+	uint64_t		th_scale;
+	int			status;
+};
+
+/*
+ * Feed-forward clock specific info structure. The feed-forward clock's
+ * estimation of clock error is an upper bound, which although potentially
+ * looser than the feedback clock equivalent, is much more reliable. The status
+ * is determined by the userland daemon.
+ */
+struct ffclock_info {
+	struct bintime		error;
+	struct bintime		tick_time;
+	struct bintime		tick_time_lerp;
+	uint64_t		period;
+	uint64_t		period_lerp;
+	int			leapsec_adjustment;
+	int			status;
+};
+
+/*
+ * Snapshot of system clocks and related information. Holds time read from each
+ * clock based on a single read of the active hardware timecounter, as well as
+ * respective clock information such as error estimates and the ffcounter value
+ * at the time of the read.
+ */
+struct sysclock_snap {
+	struct fbclock_info	fb_info;
+	struct ffclock_info	ff_info;
+	ffcounter		ffcount;
+	unsigned int		delta;
+	int			sysclock_active;
+};
+
+/* Take a snapshot of the system clocks and related information. */
+void sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast);
+
+/* Convert a timestamp from the selected system clock into bintime. */
+int sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
+    int whichclock, uint32_t flags);
+
+/* Resets feed-forward clock from RTC */
+void ffclock_reset_clock(struct timespec *ts);
+
+/*
+ * Return the current value of the feed-forward clock counter. Essential to
+ * measure time interval in counter units. If a fast timecounter is used by the
+ * system, may also allow fast but accurate timestamping.
+ */
+void ffclock_read_counter(ffcounter *ffcount);
+
+/*
+ * Retrieve feed-forward counter value and time of last kernel tick. This
+ * accepts the FFCLOCK_LERP flag.
+ */
+void ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags);
+
+/*
+ * Low level routines to convert a counter timestamp into absolute time and a
+ * counter timestamp interval into an interval in seconds. The absolute time
+ * conversion accepts the FFCLOCK_LERP flag.
+ */
+void ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags);
+void ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt);
+
+/*
+ * Feed-forward clock routines.
+ *
+ * These functions rely on the timecounters and ffclock_estimates stored in
+ * fftimehands. Note that the error_bound parameter is not the error of the
+ * clock but an upper bound on the error of the absolute time or time interval
+ * returned.
+ *
+ * ffclock_abstime(): retrieves current time as counter value and convert this
+ *     timestamp in seconds. The value (in seconds) of the converted timestamp
+ *     depends on the flags passed: for a given counter value, different
+ *     conversions are possible. Different clock models can be selected by
+ *     combining flags (for example (FFCLOCK_LERP|FFCLOCK_UPTIME) produces
+ *     linearly interpolated uptime).
+ * ffclock_difftime(): computes a time interval in seconds based on an interval
+ *     measured in ffcounter units. This should be the preferred way to measure
+ *     small time intervals very accurately.
+ */
+void ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
+    struct bintime *error_bound, uint32_t flags);
+void ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
+    struct bintime *error_bound);
+
+/*
+ * Wrapper routines to return current absolute time using the feed-forward
+ * clock. These functions are named after those defined in <sys/time.h>, which
+ * contains a description of the original ones.
+ */
+void ffclock_bintime(struct bintime *bt);
+void ffclock_nanotime(struct timespec *tsp);
+void ffclock_microtime(struct timeval *tvp);
+
+void ffclock_getbintime(struct bintime *bt);
+void ffclock_getnanotime(struct timespec *tsp);
+void ffclock_getmicrotime(struct timeval *tvp);
+
+void ffclock_binuptime(struct bintime *bt);
+void ffclock_nanouptime(struct timespec *tsp);
+void ffclock_microuptime(struct timeval *tvp);
+
+void ffclock_getbinuptime(struct bintime *bt);
+void ffclock_getnanouptime(struct timespec *tsp);
+void ffclock_getmicrouptime(struct timeval *tvp);
+
+/*
+ * Wrapper routines to convert a time interval specified in ffcounter units into
+ * seconds using the current feed-forward clock estimates.
+ */
+void ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt);
+void ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp);
+void ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp);
+
+/*
+ * When FFCLOCK is enabled in the kernel, [get]{bin,nano,micro}[up]time() become
+ * wrappers around equivalent feedback or feed-forward functions. Provide access
+ * outside of kern_tc.c to the feedback clock equivalent functions for
+ * specialised use i.e. these are not for general consumption.
+ */
+void fbclock_bintime(struct bintime *bt);
+void fbclock_nanotime(struct timespec *tsp);
+void fbclock_microtime(struct timeval *tvp);
+
+void fbclock_getbintime(struct bintime *bt);
+void fbclock_getnanotime(struct timespec *tsp);
+void fbclock_getmicrotime(struct timeval *tvp);
+
+void fbclock_binuptime(struct bintime *bt);
+void fbclock_nanouptime(struct timespec *tsp);
+void fbclock_microuptime(struct timeval *tvp);
+
+void fbclock_getbinuptime(struct bintime *bt);
+void fbclock_getnanouptime(struct timespec *tsp);
+void fbclock_getmicrouptime(struct timeval *tvp);
+
+/*
+ * Public system clock wrapper API which allows consumers to select which clock
+ * to obtain time from, independent of the current default system clock. These
+ * wrappers should be used instead of directly calling the underlying fbclock_
+ * or ffclock_ functions.
+ */
+static inline void
+bintime_fromclock(struct bintime *bt, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_bintime(bt);
+	else
+		fbclock_bintime(bt);
+}
+
+static inline void
+nanotime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_nanotime(tsp);
+	else
+		fbclock_nanotime(tsp);
+}
+
+static inline void
+microtime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_microtime(tvp);
+	else
+		fbclock_microtime(tvp);
+}
+
+static inline void
+getbintime_fromclock(struct bintime *bt, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getbintime(bt);
+	else
+		fbclock_getbintime(bt);
+}
+
+static inline void
+getnanotime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getnanotime(tsp);
+	else
+		fbclock_getnanotime(tsp);
+}
+
+static inline void
+getmicrotime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getmicrotime(tvp);
+	else
+		fbclock_getmicrotime(tvp);
+}
+
+static inline void
+binuptime_fromclock(struct bintime *bt, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_binuptime(bt);
+	else
+		fbclock_binuptime(bt);
+}
+
+static inline void
+nanouptime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_nanouptime(tsp);
+	else
+		fbclock_nanouptime(tsp);
+}
+
+static inline void
+microuptime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_microuptime(tvp);
+	else
+		fbclock_microuptime(tvp);
+}
+
+static inline void
+getbinuptime_fromclock(struct bintime *bt, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getbinuptime(bt);
+	else
+		fbclock_getbinuptime(bt);
+}
+
+static inline void
+getnanouptime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getnanouptime(tsp);
+	else
+		fbclock_getnanouptime(tsp);
+}
+
+static inline void
+getmicrouptime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+	if (whichclock == SYSCLOCK_FFWD)
+		ffclock_getmicrouptime(tvp);
+	else
+		fbclock_getmicrouptime(tvp);
+}
+
+#else /* !_KERNEL */
+
+/* Feed-Forward Clock system calls. */
+__BEGIN_DECLS
+int ffclock_getcounter(ffcounter *ffcount);
+int ffclock_getestimate(struct ffclock_estimate *cest);
+int ffclock_setestimate(struct ffclock_estimate *cest);
+__END_DECLS
+
+#endif /* _KERNEL */
+#endif /* __BSD_VISIBLE */
+#endif /* _SYS_TIMEFF_H_ */
diff --git a/cpukit/score/include/sys/timepps.h b/cpukit/score/include/sys/timepps.h
new file mode 100644
index 0000000..8083f33
--- /dev/null
+++ b/cpukit/score/include/sys/timepps.h
@@ -0,0 +1,249 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk at FreeBSD.org> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2011 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Julien Ridoux at the University
+ * of Melbourne under sponsorship from the FreeBSD Foundation.
+ *
+ * $FreeBSD$
+ *
+ * The is a FreeBSD version of the RFC 2783 API for Pulse Per Second 
+ * timing interfaces.  
+ */
+
+#ifndef _SYS_TIMEPPS_H_
+#define _SYS_TIMEPPS_H_
+
+#include <sys/_ffcounter.h>
+#include <sys/ioccom.h>
+#include <sys/time.h>
+
+#define PPS_API_VERS_1	1
+
+typedef int pps_handle_t;	
+
+typedef unsigned pps_seq_t;
+
+typedef struct ntp_fp {
+	unsigned int	integral;
+	unsigned int	fractional;
+} ntp_fp_t;
+
+typedef union pps_timeu {
+	struct timespec	tspec;
+	ntp_fp_t	ntpfp;
+	unsigned long	longpad[3];
+} pps_timeu_t;
+
+typedef struct {
+	pps_seq_t	assert_sequence;	/* assert event seq # */
+	pps_seq_t	clear_sequence;		/* clear event seq # */
+	pps_timeu_t	assert_tu;
+	pps_timeu_t	clear_tu;
+	int		current_mode;		/* current mode bits */
+} pps_info_t;
+
+typedef struct {
+	pps_seq_t	assert_sequence;	/* assert event seq # */
+	pps_seq_t	clear_sequence;		/* clear event seq # */
+	pps_timeu_t	assert_tu;
+	pps_timeu_t	clear_tu;
+	ffcounter	assert_ffcount;		/* ffcounter on assert event */
+	ffcounter	clear_ffcount;		/* ffcounter on clear event */
+	int		current_mode;		/* current mode bits */
+} pps_info_ffc_t;
+
+#define assert_timestamp        assert_tu.tspec
+#define clear_timestamp         clear_tu.tspec
+
+#define assert_timestamp_ntpfp  assert_tu.ntpfp
+#define clear_timestamp_ntpfp   clear_tu.ntpfp
+
+typedef struct {
+	int api_version;			/* API version # */
+	int mode;				/* mode bits */
+	pps_timeu_t assert_off_tu;
+	pps_timeu_t clear_off_tu;
+} pps_params_t;
+
+#define assert_offset   assert_off_tu.tspec
+#define clear_offset    clear_off_tu.tspec
+
+#define assert_offset_ntpfp     assert_off_tu.ntpfp
+#define clear_offset_ntpfp      clear_off_tu.ntpfp
+
+
+#define PPS_CAPTUREASSERT	0x01
+#define PPS_CAPTURECLEAR	0x02
+#define PPS_CAPTUREBOTH		0x03
+
+#define PPS_OFFSETASSERT	0x10
+#define PPS_OFFSETCLEAR		0x20
+
+#define PPS_ECHOASSERT		0x40
+#define PPS_ECHOCLEAR		0x80
+
+#define PPS_CANWAIT		0x100
+#define PPS_CANPOLL		0x200
+
+#define PPS_TSFMT_TSPEC		0x1000
+#define PPS_TSFMT_NTPFP		0x2000
+
+#define	PPS_TSCLK_FBCK		0x10000
+#define	PPS_TSCLK_FFWD		0x20000
+#define	PPS_TSCLK_MASK		0x30000
+
+#define PPS_KC_HARDPPS		0
+#define PPS_KC_HARDPPS_PLL	1
+#define PPS_KC_HARDPPS_FLL	2
+
+struct pps_fetch_args {
+	int tsformat;
+	pps_info_t	pps_info_buf;
+	struct timespec	timeout;
+};
+
+struct pps_fetch_ffc_args {
+	int		tsformat;
+	pps_info_ffc_t	pps_info_buf_ffc;
+	struct timespec	timeout;
+};
+
+struct pps_kcbind_args {
+	int kernel_consumer;
+	int edge;
+	int tsformat;
+};
+
+#define PPS_IOC_CREATE		_IO('1', 1)
+#define PPS_IOC_DESTROY		_IO('1', 2)
+#define PPS_IOC_SETPARAMS	_IOW('1', 3, pps_params_t)
+#define PPS_IOC_GETPARAMS	_IOR('1', 4, pps_params_t)
+#define PPS_IOC_GETCAP		_IOR('1', 5, int)
+#define PPS_IOC_FETCH		_IOWR('1', 6, struct pps_fetch_args)
+#define PPS_IOC_KCBIND		_IOW('1', 7, struct pps_kcbind_args)
+#define	PPS_IOC_FETCH_FFCOUNTER	_IOWR('1', 8, struct pps_fetch_ffc_args)
+
+#ifdef _KERNEL
+
+struct pps_state {
+	/* Capture information. */
+	struct timehands *capth;
+	struct fftimehands *capffth;
+	unsigned	capgen;
+	unsigned	capcount;
+
+	/* State information. */
+	pps_params_t	ppsparam;
+	pps_info_t	ppsinfo;
+	pps_info_ffc_t	ppsinfo_ffc;
+	int		kcmode;
+	int		ppscap;
+	struct timecounter *ppstc;
+	unsigned	ppscount[3];
+};
+
+void pps_capture(struct pps_state *pps);
+void pps_event(struct pps_state *pps, int event);
+void pps_init(struct pps_state *pps);
+int pps_ioctl(unsigned long cmd, caddr_t data, struct pps_state *pps);
+void hardpps(struct timespec *tsp, long nsec);
+
+#else /* !_KERNEL */
+
+static __inline int
+time_pps_create(int filedes, pps_handle_t *handle)
+{
+	int error;
+
+	*handle = -1;
+	error = ioctl(filedes, PPS_IOC_CREATE, 0);
+	if (error < 0) 
+		return (-1);
+	*handle = filedes;
+	return (0);
+}
+
+static __inline int
+time_pps_destroy(pps_handle_t handle)
+{
+	return (ioctl(handle, PPS_IOC_DESTROY, 0));
+}
+
+static __inline int
+time_pps_setparams(pps_handle_t handle, const pps_params_t *ppsparams)
+{
+	return (ioctl(handle, PPS_IOC_SETPARAMS, ppsparams));
+}
+
+static __inline int
+time_pps_getparams(pps_handle_t handle, pps_params_t *ppsparams)
+{
+	return (ioctl(handle, PPS_IOC_GETPARAMS, ppsparams));
+}
+
+static __inline int 
+time_pps_getcap(pps_handle_t handle, int *mode)
+{
+	return (ioctl(handle, PPS_IOC_GETCAP, mode));
+}
+
+static __inline int
+time_pps_fetch(pps_handle_t handle, const int tsformat,
+	pps_info_t *ppsinfobuf, const struct timespec *timeout)
+{
+	int error;
+	struct pps_fetch_args arg;
+
+	arg.tsformat = tsformat;
+	if (timeout == NULL) {
+		arg.timeout.tv_sec = -1;
+		arg.timeout.tv_nsec = -1;
+	} else
+		arg.timeout = *timeout;
+	error = ioctl(handle, PPS_IOC_FETCH, &arg);
+	*ppsinfobuf = arg.pps_info_buf;
+	return (error);
+}
+
+static __inline int
+time_pps_fetch_ffc(pps_handle_t handle, const int tsformat,
+	pps_info_ffc_t *ppsinfobuf, const struct timespec *timeout)
+{
+	struct pps_fetch_ffc_args arg;
+	int error;
+
+	arg.tsformat = tsformat;
+	if (timeout == NULL) {
+		arg.timeout.tv_sec = -1;
+		arg.timeout.tv_nsec = -1;
+	} else {
+		arg.timeout = *timeout;
+	}
+	error = ioctl(handle, PPS_IOC_FETCH_FFCOUNTER, &arg);
+	*ppsinfobuf = arg.pps_info_buf_ffc;
+	return (error);
+}
+
+static __inline int
+time_pps_kcbind(pps_handle_t handle, const int kernel_consumer,
+	const int edge, const int tsformat)
+{
+	struct pps_kcbind_args arg;
+
+	arg.kernel_consumer = kernel_consumer;
+	arg.edge = edge;
+	arg.tsformat = tsformat;
+	return (ioctl(handle, PPS_IOC_KCBIND, &arg));
+}
+
+#endif /* KERNEL */
+
+#endif /* !_SYS_TIMEPPS_H_ */
diff --git a/cpukit/score/include/sys/timetc.h b/cpukit/score/include/sys/timetc.h
new file mode 100644
index 0000000..e68e327
--- /dev/null
+++ b/cpukit/score/include/sys/timetc.h
@@ -0,0 +1,89 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk at FreeBSD.ORG> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS_TIMETC_H_
+#define	_SYS_TIMETC_H_
+
+#ifndef _KERNEL
+#error "no user-serviceable parts inside"
+#endif
+
+/*-
+ * `struct timecounter' is the interface between the hardware which implements
+ * a timecounter and the MI code which uses this to keep track of time.
+ *
+ * A timecounter is a binary counter which has two properties:
+ *    * it runs at a fixed, known frequency.
+ *    * it has sufficient bits to not roll over in less than approximately
+ *      max(2 msec, 2/HZ seconds).  (The value 2 here is really 1 + delta,
+ *      for some indeterminate value of delta.)
+ */
+
+struct timecounter;
+typedef u_int timecounter_get_t(struct timecounter *);
+typedef void timecounter_pps_t(struct timecounter *);
+
+struct timecounter {
+	timecounter_get_t	*tc_get_timecount;
+		/*
+		 * This function reads the counter.  It is not required to
+		 * mask any unimplemented bits out, as long as they are
+		 * constant.
+		 */
+	timecounter_pps_t	*tc_poll_pps;
+		/*
+		 * This function is optional.  It will be called whenever the
+		 * timecounter is rewound, and is intended to check for PPS
+		 * events.  Normal hardware does not need it but timecounters
+		 * which latch PPS in hardware (like sys/pci/xrpu.c) do.
+		 */
+	u_int 			tc_counter_mask;
+		/* This mask should mask off any unimplemented bits. */
+	uint64_t		tc_frequency;
+		/* Frequency of the counter in Hz. */
+	char			*tc_name;
+		/* Name of the timecounter. */
+	int			tc_quality;
+		/*
+		 * Used to determine if this timecounter is better than
+		 * another timecounter higher means better.  Negative
+		 * means "only use at explicit request".
+		 */
+	u_int			tc_flags;
+#define	TC_FLAGS_C2STOP		1	/* Timer dies in C2+. */
+#define	TC_FLAGS_SUSPEND_SAFE	2	/*
+					 * Timer functional across
+					 * suspend/resume.
+					 */
+
+	void			*tc_priv;
+		/* Pointer to the timecounter's private parts. */
+	struct timecounter	*tc_next;
+		/* Pointer to the next timecounter. */
+};
+
+extern struct timecounter *timecounter;
+extern int tc_min_ticktock_freq; /*
+				  * Minimal tc_ticktock() call frequency,
+				  * required to handle counter wraps.
+				  */
+
+u_int64_t tc_getfrequency(void);
+void	tc_init(struct timecounter *tc);
+void	tc_setclock(struct timespec *ts);
+void	tc_ticktock(int cnt);
+void	cpu_tick_calibration(void);
+
+#ifdef SYSCTL_DECL
+SYSCTL_DECL(_kern_timecounter);
+#endif
+
+#endif /* !_SYS_TIMETC_H_ */
diff --git a/cpukit/score/include/sys/timex.h b/cpukit/score/include/sys/timex.h
new file mode 100644
index 0000000..4b75fcc
--- /dev/null
+++ b/cpukit/score/include/sys/timex.h
@@ -0,0 +1,171 @@
+/*-
+ ***********************************************************************
+ *								       *
+ * Copyright (c) David L. Mills 1993-2001			       *
+ * Copyright (c) Poul-Henning Kamp 2000-2001                           *
+ *								       *
+ * Permission to use, copy, modify, and distribute this software and   *
+ * its documentation for any purpose and without fee is hereby	       *
+ * granted, provided that the above copyright notice appears in all    *
+ * copies and that both the copyright notice and this permission       *
+ * notice appear in supporting documentation, and that the name        *
+ * University of Delaware not be used in advertising or publicity      *
+ * pertaining to distribution of the software without specific,	       *
+ * written prior permission. The University of Delaware makes no       *
+ * representations about the suitability this software for any	       *
+ * purpose. It is provided "as is" without express or implied	       *
+ * warranty.							       *
+ *								       *
+ ***********************************************************************
+ *
+ * $FreeBSD$
+ *
+ * This header file defines the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs.
+ *
+ * This file was originally created 17 Sep 93 by David L. Mills, Professor
+ * of University of Delaware, building on work which had already been ongoing
+ * for a decade and a half at that point in time.
+ *
+ * In 2000 the APIs got a upgrade from microseconds to nanoseconds,
+ * a joint work between Poul-Henning Kamp and David L. Mills.
+ *
+ */
+
+#ifndef _SYS_TIMEX_H_
+#define _SYS_TIMEX_H_ 1
+
+#define NTP_API		4		/* NTP API version */
+
+#ifdef __FreeBSD__
+#include <sys/_timespec.h>
+#endif /* __FreeBSD__ */
+
+/*
+ * The following defines establish the performance envelope of the
+ * kernel discipline loop. Phase or frequency errors greater than
+ * NAXPHASE or MAXFREQ are clamped to these maxima. For update intervals
+ * less than MINSEC, the loop always operates in PLL mode; while, for
+ * update intervals greater than MAXSEC, the loop always operates in FLL
+ * mode. Between these two limits the operating mode is selected by the
+ * STA_FLL bit in the status word.
+ */
+
+#define MAXPHASE	500000000L	/* max phase error (ns) */
+#define MAXFREQ		500000L		/* max freq error (ns/s) */
+#define MINSEC		256		/* min FLL update interval (s) */
+#define MAXSEC		2048		/* max PLL update interval (s) */
+#define NANOSECOND	1000000000L	/* nanoseconds in one second */
+#define SCALE_PPM	(65536 / 1000)	/* crude ns/s to scaled PPM */
+#define MAXTC		10		/* max time constant */
+
+/*
+ * Control mode codes (timex.modes)
+ */
+#define MOD_OFFSET	0x0001		/* set time offset */
+#define MOD_FREQUENCY	0x0002		/* set frequency offset */
+#define MOD_MAXERROR	0x0004		/* set maximum time error */
+#define MOD_ESTERROR	0x0008		/* set estimated time error */
+#define MOD_STATUS	0x0010		/* set clock status bits */
+#define MOD_TIMECONST	0x0020		/* set PLL time constant */
+#define MOD_PPSMAX	0x0040		/* set PPS maximum averaging time */
+#define MOD_TAI		0x0080		/* set TAI offset */
+#define	MOD_MICRO	0x1000		/* select microsecond resolution */
+#define	MOD_NANO	0x2000		/* select nanosecond resolution */
+#define MOD_CLKB	0x4000		/* select clock B */
+#define MOD_CLKA	0x8000		/* select clock A */
+
+/*
+ * Status codes (timex.status)
+ */
+#define STA_PLL		0x0001		/* enable PLL updates (rw) */
+#define STA_PPSFREQ	0x0002		/* enable PPS freq discipline (rw) */
+#define STA_PPSTIME	0x0004		/* enable PPS time discipline (rw) */
+#define STA_FLL		0x0008		/* enable FLL mode (rw) */
+#define STA_INS		0x0010		/* insert leap (rw) */
+#define STA_DEL		0x0020		/* delete leap (rw) */
+#define STA_UNSYNC	0x0040		/* clock unsynchronized (rw) */
+#define STA_FREQHOLD	0x0080		/* hold frequency (rw) */
+#define STA_PPSSIGNAL	0x0100		/* PPS signal present (ro) */
+#define STA_PPSJITTER	0x0200		/* PPS signal jitter exceeded (ro) */
+#define STA_PPSWANDER	0x0400		/* PPS signal wander exceeded (ro) */
+#define STA_PPSERROR	0x0800		/* PPS signal calibration error (ro) */
+#define STA_CLOCKERR	0x1000		/* clock hardware fault (ro) */
+#define STA_NANO	0x2000		/* resolution (0 = us, 1 = ns) (ro) */
+#define STA_MODE	0x4000		/* mode (0 = PLL, 1 = FLL) (ro) */
+#define STA_CLK		0x8000		/* clock source (0 = A, 1 = B) (ro) */
+
+#define STA_RONLY (STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | \
+    STA_PPSERROR | STA_CLOCKERR | STA_NANO | STA_MODE | STA_CLK)
+
+/*
+ * Clock states (ntptimeval.time_state)
+ */
+#define TIME_OK		0		/* no leap second warning */
+#define TIME_INS	1		/* insert leap second warning */
+#define TIME_DEL	2		/* delete leap second warning */
+#define TIME_OOP	3		/* leap second in progress */
+#define TIME_WAIT	4		/* leap second has occured */
+#define TIME_ERROR	5		/* error (see status word) */
+
+/*
+ * NTP user interface -- ntp_gettime(2) - used to read kernel clock values
+ */
+struct ntptimeval {
+	struct timespec time;		/* current time (ns) (ro) */
+	long maxerror;			/* maximum error (us) (ro) */
+	long esterror;			/* estimated error (us) (ro) */
+	long tai;			/* TAI offset */
+	int time_state;			/* time status */
+};
+
+/*
+ * NTP daemon interface -- ntp_adjtime(2) -- used to discipline CPU clock
+ * oscillator and control/determine status.
+ *
+ * Note: The offset, precision and jitter members are in microseconds if
+ * STA_NANO is zero and nanoseconds if not.
+ */
+struct timex {
+	unsigned int modes;		/* clock mode bits (wo) */
+	long	offset;			/* time offset (ns/us) (rw) */
+	long	freq;			/* frequency offset (scaled PPM) (rw) */
+	long	maxerror;		/* maximum error (us) (rw) */
+	long	esterror;		/* estimated error (us) (rw) */
+	int	status;			/* clock status bits (rw) */
+	long	constant;		/* poll interval (log2 s) (rw) */
+	long	precision;		/* clock precision (ns/us) (ro) */
+	long	tolerance;		/* clock frequency tolerance (scaled
+				 	 * PPM) (ro) */
+	/*
+	 * The following read-only structure members are implemented
+	 * only if the PPS signal discipline is configured in the
+	 * kernel. They are included in all configurations to insure
+	 * portability.
+	 */
+	long	ppsfreq;		/* PPS frequency (scaled PPM) (ro) */
+	long	jitter;			/* PPS jitter (ns/us) (ro) */
+	int	shift;			/* interval duration (s) (shift) (ro) */
+	long	stabil;			/* PPS stability (scaled PPM) (ro) */
+	long	jitcnt;			/* jitter limit exceeded (ro) */
+	long	calcnt;			/* calibration intervals (ro) */
+	long	errcnt;			/* calibration errors (ro) */
+	long	stbcnt;			/* stability limit exceeded (ro) */
+};
+
+#ifdef __FreeBSD__
+
+#ifdef _KERNEL
+void	ntp_update_second(int64_t *adjustment, time_t *newsec);
+#else /* !_KERNEL */
+#include <sys/cdefs.h>
+
+__BEGIN_DECLS
+int	ntp_adjtime(struct timex *);
+int	ntp_gettime(struct ntptimeval *);
+__END_DECLS
+#endif /* _KERNEL */
+
+#endif /* __FreeBSD__ */
+
+#endif /* !_SYS_TIMEX_H_ */
diff --git a/cpukit/score/src/kern_tc.c b/cpukit/score/src/kern_tc.c
new file mode 100644
index 0000000..1c29041
--- /dev/null
+++ b/cpukit/score/src/kern_tc.c
@@ -0,0 +1,2039 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk at FreeBSD.ORG> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2011 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Julien Ridoux at the University
+ * of Melbourne under sponsorship from the FreeBSD Foundation.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "opt_compat.h"
+#include "opt_ntp.h"
+#include "opt_ffclock.h"
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/limits.h>
+#ifdef FFCLOCK
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#endif
+#include <sys/sysctl.h>
+#include <sys/syslog.h>
+#include <sys/systm.h>
+#include <sys/timeffc.h>
+#include <sys/timepps.h>
+#include <sys/timetc.h>
+#include <sys/timex.h>
+#include <sys/vdso.h>
+
+/*
+ * A large step happens on boot.  This constant detects such steps.
+ * It is relatively small so that ntp_update_second gets called enough
+ * in the typical 'missed a couple of seconds' case, but doesn't loop
+ * forever when the time step is large.
+ */
+#define LARGE_STEP	200
+
+/*
+ * Implement a dummy timecounter which we can use until we get a real one
+ * in the air.  This allows the console and other early stuff to use
+ * time services.
+ */
+
+static u_int
+dummy_get_timecount(struct timecounter *tc)
+{
+	static u_int now;
+
+	return (++now);
+}
+
+static struct timecounter dummy_timecounter = {
+	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
+};
+
+struct timehands {
+	/* These fields must be initialized by the driver. */
+	struct timecounter	*th_counter;
+	int64_t			th_adjustment;
+	uint64_t		th_scale;
+	u_int	 		th_offset_count;
+	struct bintime		th_offset;
+	struct timeval		th_microtime;
+	struct timespec		th_nanotime;
+	/* Fields not to be copied in tc_windup start with th_generation. */
+	volatile u_int		th_generation;
+	struct timehands	*th_next;
+};
+
+static struct timehands th0;
+static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
+static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
+static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
+static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
+static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
+static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
+static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
+static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
+static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
+static struct timehands th0 = {
+	&dummy_timecounter,
+	0,
+	(uint64_t)-1 / 1000000,
+	0,
+	{1, 0},
+	{0, 0},
+	{0, 0},
+	1,
+	&th1
+};
+
+static struct timehands *volatile timehands = &th0;
+struct timecounter *timecounter = &dummy_timecounter;
+static struct timecounter *timecounters = &dummy_timecounter;
+
+int tc_min_ticktock_freq = 1;
+
+volatile time_t time_second = 1;
+volatile time_t time_uptime = 1;
+
+struct bintime boottimebin;
+struct timeval boottime;
+static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
+    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
+
+SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
+static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
+
+static int timestepwarnings;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
+    &timestepwarnings, 0, "Log time steps");
+
+struct bintime bt_timethreshold;
+struct bintime bt_tickthreshold;
+sbintime_t sbt_timethreshold;
+sbintime_t sbt_tickthreshold;
+struct bintime tc_tick_bt;
+sbintime_t tc_tick_sbt;
+int tc_precexp;
+int tc_timepercentage = TC_DEFAULTPERC;
+static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
+    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
+    sysctl_kern_timecounter_adjprecision, "I",
+    "Allowed time interval deviation in percents");
+
+static void tc_windup(void);
+static void cpu_tick_calibrate(int);
+
+void dtrace_getnanotime(struct timespec *tsp);
+
+static int
+sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
+{
+#ifndef __mips__
+#ifdef SCTL_MASK32
+	int tv[2];
+
+	if (req->flags & SCTL_MASK32) {
+		tv[0] = boottime.tv_sec;
+		tv[1] = boottime.tv_usec;
+		return SYSCTL_OUT(req, tv, sizeof(tv));
+	} else
+#endif
+#endif
+		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
+}
+
+static int
+sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
+{
+	u_int ncount;
+	struct timecounter *tc = arg1;
+
+	ncount = tc->tc_get_timecount(tc);
+	return sysctl_handle_int(oidp, &ncount, 0, req);
+}
+
+static int
+sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
+{
+	uint64_t freq;
+	struct timecounter *tc = arg1;
+
+	freq = tc->tc_frequency;
+	return sysctl_handle_64(oidp, &freq, 0, req);
+}
+
+/*
+ * Return the difference between the timehands' counter value now and what
+ * was when we copied it to the timehands' offset_count.
+ */
+static __inline u_int
+tc_delta(struct timehands *th)
+{
+	struct timecounter *tc;
+
+	tc = th->th_counter;
+	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
+	    tc->tc_counter_mask);
+}
+
+/*
+ * Functions for reading the time.  We have to loop until we are sure that
+ * the timehands that we operated on was not updated under our feet.  See
+ * the comment in <sys/time.h> for a description of these 12 functions.
+ */
+
+#ifdef FFCLOCK
+void
+fbclock_binuptime(struct bintime *bt)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+		bintime_addx(bt, th->th_scale * tc_delta(th));
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_nanouptime(struct timespec *tsp)
+{
+	struct bintime bt;
+
+	fbclock_binuptime(&bt);
+	bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microuptime(struct timeval *tvp)
+{
+	struct bintime bt;
+
+	fbclock_binuptime(&bt);
+	bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_bintime(struct bintime *bt)
+{
+
+	fbclock_binuptime(bt);
+	bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_nanotime(struct timespec *tsp)
+{
+	struct bintime bt;
+
+	fbclock_bintime(&bt);
+	bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microtime(struct timeval *tvp)
+{
+	struct bintime bt;
+
+	fbclock_bintime(&bt);
+	bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_getbinuptime(struct bintime *bt)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getnanouptime(struct timespec *tsp)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		bintime2timespec(&th->th_offset, tsp);
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrouptime(struct timeval *tvp)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		bintime2timeval(&th->th_offset, tvp);
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getbintime(struct bintime *bt)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+	} while (gen == 0 || gen != th->th_generation);
+	bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_getnanotime(struct timespec *tsp)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*tsp = th->th_nanotime;
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrotime(struct timeval *tvp)
+{
+	struct timehands *th;
+	unsigned int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*tvp = th->th_microtime;
+	} while (gen == 0 || gen != th->th_generation);
+}
+#else /* !FFCLOCK */
+void
+binuptime(struct bintime *bt)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+		bintime_addx(bt, th->th_scale * tc_delta(th));
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+	struct bintime bt;
+
+	binuptime(&bt);
+	bintime2timespec(&bt, tsp);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+	struct bintime bt;
+
+	binuptime(&bt);
+	bintime2timeval(&bt, tvp);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+	binuptime(bt);
+	bintime_add(bt, &boottimebin);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+	struct bintime bt;
+
+	bintime(&bt);
+	bintime2timespec(&bt, tsp);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+	struct bintime bt;
+
+	bintime(&bt);
+	bintime2timeval(&bt, tvp);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		bintime2timespec(&th->th_offset, tsp);
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		bintime2timeval(&th->th_offset, tvp);
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*bt = th->th_offset;
+	} while (gen == 0 || gen != th->th_generation);
+	bintime_add(bt, &boottimebin);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*tsp = th->th_nanotime;
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*tvp = th->th_microtime;
+	} while (gen == 0 || gen != th->th_generation);
+}
+#endif /* FFCLOCK */
+
+#ifdef FFCLOCK
+/*
+ * Support for feed-forward synchronization algorithms. This is heavily inspired
+ * by the timehands mechanism but kept independent from it. *_windup() functions
+ * have some connection to avoid accessing the timecounter hardware more than
+ * necessary.
+ */
+
+/* Feed-forward clock estimates kept updated by the synchronization daemon. */
+struct ffclock_estimate ffclock_estimate;
+struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
+uint32_t ffclock_status;		/* Feed-forward clock status. */
+int8_t ffclock_updated;			/* New estimates are available. */
+struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
+
+struct fftimehands {
+	struct ffclock_estimate	cest;
+	struct bintime		tick_time;
+	struct bintime		tick_time_lerp;
+	ffcounter		tick_ffcount;
+	uint64_t		period_lerp;
+	volatile uint8_t	gen;
+	struct fftimehands	*next;
+};
+
+#define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
+
+static struct fftimehands ffth[10];
+static struct fftimehands *volatile fftimehands = ffth;
+
+static void
+ffclock_init(void)
+{
+	struct fftimehands *cur;
+	struct fftimehands *last;
+
+	memset(ffth, 0, sizeof(ffth));
+
+	last = ffth + NUM_ELEMENTS(ffth) - 1;
+	for (cur = ffth; cur < last; cur++)
+		cur->next = cur + 1;
+	last->next = ffth;
+
+	ffclock_updated = 0;
+	ffclock_status = FFCLOCK_STA_UNSYNC;
+	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
+}
+
+/*
+ * Reset the feed-forward clock estimates. Called from inittodr() to get things
+ * kick started and uses the timecounter nominal frequency as a first period
+ * estimate. Note: this function may be called several time just after boot.
+ * Note: this is the only function that sets the value of boot time for the
+ * monotonic (i.e. uptime) version of the feed-forward clock.
+ */
+void
+ffclock_reset_clock(struct timespec *ts)
+{
+	struct timecounter *tc;
+	struct ffclock_estimate cest;
+
+	tc = timehands->th_counter;
+	memset(&cest, 0, sizeof(struct ffclock_estimate));
+
+	timespec2bintime(ts, &ffclock_boottime);
+	timespec2bintime(ts, &(cest.update_time));
+	ffclock_read_counter(&cest.update_ffcount);
+	cest.leapsec_next = 0;
+	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
+	cest.errb_abs = 0;
+	cest.errb_rate = 0;
+	cest.status = FFCLOCK_STA_UNSYNC;
+	cest.leapsec_total = 0;
+	cest.leapsec = 0;
+
+	mtx_lock(&ffclock_mtx);
+	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
+	ffclock_updated = INT8_MAX;
+	mtx_unlock(&ffclock_mtx);
+
+	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
+	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
+	    (unsigned long)ts->tv_nsec);
+}
+
+/*
+ * Sub-routine to convert a time interval measured in RAW counter units to time
+ * in seconds stored in bintime format.
+ * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
+ * larger than the max value of u_int (on 32 bit architecture). Loop to consume
+ * extra cycles.
+ */
+static void
+ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
+{
+	struct bintime bt2;
+	ffcounter delta, delta_max;
+
+	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
+	bintime_clear(bt);
+	do {
+		if (ffdelta > delta_max)
+			delta = delta_max;
+		else
+			delta = ffdelta;
+		bt2.sec = 0;
+		bt2.frac = period;
+		bintime_mul(&bt2, (unsigned int)delta);
+		bintime_add(bt, &bt2);
+		ffdelta -= delta;
+	} while (ffdelta > 0);
+}
+
+/*
+ * Update the fftimehands.
+ * Push the tick ffcount and time(s) forward based on current clock estimate.
+ * The conversion from ffcounter to bintime relies on the difference clock
+ * principle, whose accuracy relies on computing small time intervals. If a new
+ * clock estimate has been passed by the synchronisation daemon, make it
+ * current, and compute the linear interpolation for monotonic time if needed.
+ */
+static void
+ffclock_windup(unsigned int delta)
+{
+	struct ffclock_estimate *cest;
+	struct fftimehands *ffth;
+	struct bintime bt, gap_lerp;
+	ffcounter ffdelta;
+	uint64_t frac;
+	unsigned int polling;
+	uint8_t forward_jump, ogen;
+
+	/*
+	 * Pick the next timehand, copy current ffclock estimates and move tick
+	 * times and counter forward.
+	 */
+	forward_jump = 0;
+	ffth = fftimehands->next;
+	ogen = ffth->gen;
+	ffth->gen = 0;
+	cest = &ffth->cest;
+	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
+	ffdelta = (ffcounter)delta;
+	ffth->period_lerp = fftimehands->period_lerp;
+
+	ffth->tick_time = fftimehands->tick_time;
+	ffclock_convert_delta(ffdelta, cest->period, &bt);
+	bintime_add(&ffth->tick_time, &bt);
+
+	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
+	bintime_add(&ffth->tick_time_lerp, &bt);
+
+	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
+
+	/*
+	 * Assess the status of the clock, if the last update is too old, it is
+	 * likely the synchronisation daemon is dead and the clock is free
+	 * running.
+	 */
+	if (ffclock_updated == 0) {
+		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+		ffclock_convert_delta(ffdelta, cest->period, &bt);
+		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
+			ffclock_status |= FFCLOCK_STA_UNSYNC;
+	}
+
+	/*
+	 * If available, grab updated clock estimates and make them current.
+	 * Recompute time at this tick using the updated estimates. The clock
+	 * estimates passed the feed-forward synchronisation daemon may result
+	 * in time conversion that is not monotonically increasing (just after
+	 * the update). time_lerp is a particular linear interpolation over the
+	 * synchronisation algo polling period that ensures monotonicity for the
+	 * clock ids requesting it.
+	 */
+	if (ffclock_updated > 0) {
+		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
+		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+		ffth->tick_time = cest->update_time;
+		ffclock_convert_delta(ffdelta, cest->period, &bt);
+		bintime_add(&ffth->tick_time, &bt);
+
+		/* ffclock_reset sets ffclock_updated to INT8_MAX */
+		if (ffclock_updated == INT8_MAX)
+			ffth->tick_time_lerp = ffth->tick_time;
+
+		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
+			forward_jump = 1;
+		else
+			forward_jump = 0;
+
+		bintime_clear(&gap_lerp);
+		if (forward_jump) {
+			gap_lerp = ffth->tick_time;
+			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
+		} else {
+			gap_lerp = ffth->tick_time_lerp;
+			bintime_sub(&gap_lerp, &ffth->tick_time);
+		}
+
+		/*
+		 * The reset from the RTC clock may be far from accurate, and
+		 * reducing the gap between real time and interpolated time
+		 * could take a very long time if the interpolated clock insists
+		 * on strict monotonicity. The clock is reset under very strict
+		 * conditions (kernel time is known to be wrong and
+		 * synchronization daemon has been restarted recently.
+		 * ffclock_boottime absorbs the jump to ensure boot time is
+		 * correct and uptime functions stay consistent.
+		 */
+		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
+		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
+		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
+			if (forward_jump)
+				bintime_add(&ffclock_boottime, &gap_lerp);
+			else
+				bintime_sub(&ffclock_boottime, &gap_lerp);
+			ffth->tick_time_lerp = ffth->tick_time;
+			bintime_clear(&gap_lerp);
+		}
+
+		ffclock_status = cest->status;
+		ffth->period_lerp = cest->period;
+
+		/*
+		 * Compute corrected period used for the linear interpolation of
+		 * time. The rate of linear interpolation is capped to 5000PPM
+		 * (5ms/s).
+		 */
+		if (bintime_isset(&gap_lerp)) {
+			ffdelta = cest->update_ffcount;
+			ffdelta -= fftimehands->cest.update_ffcount;
+			ffclock_convert_delta(ffdelta, cest->period, &bt);
+			polling = bt.sec;
+			bt.sec = 0;
+			bt.frac = 5000000 * (uint64_t)18446744073LL;
+			bintime_mul(&bt, polling);
+			if (bintime_cmp(&gap_lerp, &bt, >))
+				gap_lerp = bt;
+
+			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
+			frac = 0;
+			if (gap_lerp.sec > 0) {
+				frac -= 1;
+				frac /= ffdelta / gap_lerp.sec;
+			}
+			frac += gap_lerp.frac / ffdelta;
+
+			if (forward_jump)
+				ffth->period_lerp += frac;
+			else
+				ffth->period_lerp -= frac;
+		}
+
+		ffclock_updated = 0;
+	}
+	if (++ogen == 0)
+		ogen = 1;
+	ffth->gen = ogen;
+	fftimehands = ffth;
+}
+
+/*
+ * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
+ * the old and new hardware counter cannot be read simultaneously. tc_windup()
+ * does read the two counters 'back to back', but a few cycles are effectively
+ * lost, and not accumulated in tick_ffcount. This is a fairly radical
+ * operation for a feed-forward synchronization daemon, and it is its job to not
+ * pushing irrelevant data to the kernel. Because there is no locking here,
+ * simply force to ignore pending or next update to give daemon a chance to
+ * realize the counter has changed.
+ */
+static void
+ffclock_change_tc(struct timehands *th)
+{
+	struct fftimehands *ffth;
+	struct ffclock_estimate *cest;
+	struct timecounter *tc;
+	uint8_t ogen;
+
+	tc = th->th_counter;
+	ffth = fftimehands->next;
+	ogen = ffth->gen;
+	ffth->gen = 0;
+
+	cest = &ffth->cest;
+	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
+	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
+	cest->errb_abs = 0;
+	cest->errb_rate = 0;
+	cest->status |= FFCLOCK_STA_UNSYNC;
+
+	ffth->tick_ffcount = fftimehands->tick_ffcount;
+	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+	ffth->tick_time = fftimehands->tick_time;
+	ffth->period_lerp = cest->period;
+
+	/* Do not lock but ignore next update from synchronization daemon. */
+	ffclock_updated--;
+
+	if (++ogen == 0)
+		ogen = 1;
+	ffth->gen = ogen;
+	fftimehands = ffth;
+}
+
+/*
+ * Retrieve feed-forward counter and time of last kernel tick.
+ */
+void
+ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
+{
+	struct fftimehands *ffth;
+	uint8_t gen;
+
+	/*
+	 * No locking but check generation has not changed. Also need to make
+	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+	 */
+	do {
+		ffth = fftimehands;
+		gen = ffth->gen;
+		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
+			*bt = ffth->tick_time_lerp;
+		else
+			*bt = ffth->tick_time;
+		*ffcount = ffth->tick_ffcount;
+	} while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Absolute clock conversion. Low level function to convert ffcounter to
+ * bintime. The ffcounter is converted using the current ffclock period estimate
+ * or the "interpolated period" to ensure monotonicity.
+ * NOTE: this conversion may have been deferred, and the clock updated since the
+ * hardware counter has been read.
+ */
+void
+ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
+{
+	struct fftimehands *ffth;
+	struct bintime bt2;
+	ffcounter ffdelta;
+	uint8_t gen;
+
+	/*
+	 * No locking but check generation has not changed. Also need to make
+	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+	 */
+	do {
+		ffth = fftimehands;
+		gen = ffth->gen;
+		if (ffcount > ffth->tick_ffcount)
+			ffdelta = ffcount - ffth->tick_ffcount;
+		else
+			ffdelta = ffth->tick_ffcount - ffcount;
+
+		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
+			*bt = ffth->tick_time_lerp;
+			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
+		} else {
+			*bt = ffth->tick_time;
+			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
+		}
+
+		if (ffcount > ffth->tick_ffcount)
+			bintime_add(bt, &bt2);
+		else
+			bintime_sub(bt, &bt2);
+	} while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Difference clock conversion.
+ * Low level function to Convert a time interval measured in RAW counter units
+ * into bintime. The difference clock allows measuring small intervals much more
+ * reliably than the absolute clock.
+ */
+void
+ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
+{
+	struct fftimehands *ffth;
+	uint8_t gen;
+
+	/* No locking but check generation has not changed. */
+	do {
+		ffth = fftimehands;
+		gen = ffth->gen;
+		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
+	} while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Access to current ffcounter value.
+ */
+void
+ffclock_read_counter(ffcounter *ffcount)
+{
+	struct timehands *th;
+	struct fftimehands *ffth;
+	unsigned int gen, delta;
+
+	/*
+	 * ffclock_windup() called from tc_windup(), safe to rely on
+	 * th->th_generation only, for correct delta and ffcounter.
+	 */
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		ffth = fftimehands;
+		delta = tc_delta(th);
+		*ffcount = ffth->tick_ffcount;
+	} while (gen == 0 || gen != th->th_generation);
+
+	*ffcount += delta;
+}
+
+void
+binuptime(struct bintime *bt)
+{
+
+	binuptime_fromclock(bt, sysclock_active);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+
+	nanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+
+	microuptime_fromclock(tvp, sysclock_active);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+	bintime_fromclock(bt, sysclock_active);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+
+	nanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+
+	microtime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+
+	getbinuptime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+
+	getnanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+
+	getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+
+	getbintime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+
+	getnanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+
+	getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+#endif /* FFCLOCK */
+
+/*
+ * This is a clone of getnanotime and used for walltimestamps.
+ * The dtrace_ prefix prevents fbt from creating probes for
+ * it so walltimestamp can be safely used in all fbt probes.
+ */
+void
+dtrace_getnanotime(struct timespec *tsp)
+{
+	struct timehands *th;
+	u_int gen;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		*tsp = th->th_nanotime;
+	} while (gen == 0 || gen != th->th_generation);
+}
+
+/*
+ * System clock currently providing time to the system. Modifiable via sysctl
+ * when the FFCLOCK option is defined.
+ */
+int sysclock_active = SYSCLOCK_FBCK;
+
+/* Internal NTP status and error estimates. */
+extern int time_status;
+extern long time_esterror;
+
+/*
+ * Take a snapshot of sysclock data which can be used to compare system clocks
+ * and generate timestamps after the fact.
+ */
+void
+sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
+{
+	struct fbclock_info *fbi;
+	struct timehands *th;
+	struct bintime bt;
+	unsigned int delta, gen;
+#ifdef FFCLOCK
+	ffcounter ffcount;
+	struct fftimehands *ffth;
+	struct ffclock_info *ffi;
+	struct ffclock_estimate cest;
+
+	ffi = &clock_snap->ff_info;
+#endif
+
+	fbi = &clock_snap->fb_info;
+	delta = 0;
+
+	do {
+		th = timehands;
+		gen = th->th_generation;
+		fbi->th_scale = th->th_scale;
+		fbi->tick_time = th->th_offset;
+#ifdef FFCLOCK
+		ffth = fftimehands;
+		ffi->tick_time = ffth->tick_time_lerp;
+		ffi->tick_time_lerp = ffth->tick_time_lerp;
+		ffi->period = ffth->cest.period;
+		ffi->period_lerp = ffth->period_lerp;
+		clock_snap->ffcount = ffth->tick_ffcount;
+		cest = ffth->cest;
+#endif
+		if (!fast)
+			delta = tc_delta(th);
+	} while (gen == 0 || gen != th->th_generation);
+
+	clock_snap->delta = delta;
+	clock_snap->sysclock_active = sysclock_active;
+
+	/* Record feedback clock status and error. */
+	clock_snap->fb_info.status = time_status;
+	/* XXX: Very crude estimate of feedback clock error. */
+	bt.sec = time_esterror / 1000000;
+	bt.frac = ((time_esterror - bt.sec) * 1000000) *
+	    (uint64_t)18446744073709ULL;
+	clock_snap->fb_info.error = bt;
+
+#ifdef FFCLOCK
+	if (!fast)
+		clock_snap->ffcount += delta;
+
+	/* Record feed-forward clock leap second adjustment. */
+	ffi->leapsec_adjustment = cest.leapsec_total;
+	if (clock_snap->ffcount > cest.leapsec_next)
+		ffi->leapsec_adjustment -= cest.leapsec;
+
+	/* Record feed-forward clock status and error. */
+	clock_snap->ff_info.status = cest.status;
+	ffcount = clock_snap->ffcount - cest.update_ffcount;
+	ffclock_convert_delta(ffcount, cest.period, &bt);
+	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
+	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
+	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
+	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
+	clock_snap->ff_info.error = bt;
+#endif
+}
+
+/*
+ * Convert a sysclock snapshot into a struct bintime based on the specified
+ * clock source and flags.
+ */
+int
+sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
+    int whichclock, uint32_t flags)
+{
+#ifdef FFCLOCK
+	struct bintime bt2;
+	uint64_t period;
+#endif
+
+	switch (whichclock) {
+	case SYSCLOCK_FBCK:
+		*bt = cs->fb_info.tick_time;
+
+		/* If snapshot was created with !fast, delta will be >0. */
+		if (cs->delta > 0)
+			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
+
+		if ((flags & FBCLOCK_UPTIME) == 0)
+			bintime_add(bt, &boottimebin);
+		break;
+#ifdef FFCLOCK
+	case SYSCLOCK_FFWD:
+		if (flags & FFCLOCK_LERP) {
+			*bt = cs->ff_info.tick_time_lerp;
+			period = cs->ff_info.period_lerp;
+		} else {
+			*bt = cs->ff_info.tick_time;
+			period = cs->ff_info.period;
+		}
+
+		/* If snapshot was created with !fast, delta will be >0. */
+		if (cs->delta > 0) {
+			ffclock_convert_delta(cs->delta, period, &bt2);
+			bintime_add(bt, &bt2);
+		}
+
+		/* Leap second adjustment. */
+		if (flags & FFCLOCK_LEAPSEC)
+			bt->sec -= cs->ff_info.leapsec_adjustment;
+
+		/* Boot time adjustment, for uptime/monotonic clocks. */
+		if (flags & FFCLOCK_UPTIME)
+			bintime_sub(bt, &ffclock_boottime);
+		break;
+#endif
+	default:
+		return (EINVAL);
+		break;
+	}
+
+	return (0);
+}
+
+/*
+ * Initialize a new timecounter and possibly use it.
+ */
+void
+tc_init(struct timecounter *tc)
+{
+	u_int u;
+	struct sysctl_oid *tc_root;
+
+	u = tc->tc_frequency / tc->tc_counter_mask;
+	/* XXX: We need some margin here, 10% is a guess */
+	u *= 11;
+	u /= 10;
+	if (u > hz && tc->tc_quality >= 0) {
+		tc->tc_quality = -2000;
+		if (bootverbose) {
+			printf("Timecounter \"%s\" frequency %ju Hz",
+			    tc->tc_name, (uintmax_t)tc->tc_frequency);
+			printf(" -- Insufficient hz, needs at least %u\n", u);
+		}
+	} else if (tc->tc_quality >= 0 || bootverbose) {
+		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
+		    tc->tc_name, (uintmax_t)tc->tc_frequency,
+		    tc->tc_quality);
+	}
+
+	tc->tc_next = timecounters;
+	timecounters = tc;
+	/*
+	 * Set up sysctl tree for this counter.
+	 */
+	tc_root = SYSCTL_ADD_NODE(NULL,
+	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
+	    CTLFLAG_RW, 0, "timecounter description");
+	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
+	    "mask for implemented bits");
+	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
+	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
+	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
+	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
+	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
+	    "goodness of time counter");
+	/*
+	 * Never automatically use a timecounter with negative quality.
+	 * Even though we run on the dummy counter, switching here may be
+	 * worse since this timecounter may not be monotonous.
+	 */
+	if (tc->tc_quality < 0)
+		return;
+	if (tc->tc_quality < timecounter->tc_quality)
+		return;
+	if (tc->tc_quality == timecounter->tc_quality &&
+	    tc->tc_frequency < timecounter->tc_frequency)
+		return;
+	(void)tc->tc_get_timecount(tc);
+	(void)tc->tc_get_timecount(tc);
+	timecounter = tc;
+}
+
+/* Report the frequency of the current timecounter. */
+uint64_t
+tc_getfrequency(void)
+{
+
+	return (timehands->th_counter->tc_frequency);
+}
+
+/*
+ * Step our concept of UTC.  This is done by modifying our estimate of
+ * when we booted.
+ * XXX: not locked.
+ */
+void
+tc_setclock(struct timespec *ts)
+{
+	struct timespec tbef, taft;
+	struct bintime bt, bt2;
+
+	cpu_tick_calibrate(1);
+	nanotime(&tbef);
+	timespec2bintime(ts, &bt);
+	binuptime(&bt2);
+	bintime_sub(&bt, &bt2);
+	bintime_add(&bt2, &boottimebin);
+	boottimebin = bt;
+	bintime2timeval(&bt, &boottime);
+
+	/* XXX fiddle all the little crinkly bits around the fiords... */
+	tc_windup();
+	nanotime(&taft);
+	if (timestepwarnings) {
+		log(LOG_INFO,
+		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
+		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
+		    (intmax_t)taft.tv_sec, taft.tv_nsec,
+		    (intmax_t)ts->tv_sec, ts->tv_nsec);
+	}
+	cpu_tick_calibrate(1);
+}
+
+/*
+ * Initialize the next struct timehands in the ring and make
+ * it the active timehands.  Along the way we might switch to a different
+ * timecounter and/or do seconds processing in NTP.  Slightly magic.
+ */
+static void
+tc_windup(void)
+{
+	struct bintime bt;
+	struct timehands *th, *tho;
+	uint64_t scale;
+	u_int delta, ncount, ogen;
+	int i;
+	time_t t;
+
+	/*
+	 * Make the next timehands a copy of the current one, but do not
+	 * overwrite the generation or next pointer.  While we update
+	 * the contents, the generation must be zero.
+	 */
+	tho = timehands;
+	th = tho->th_next;
+	ogen = th->th_generation;
+	th->th_generation = 0;
+	bcopy(tho, th, offsetof(struct timehands, th_generation));
+
+	/*
+	 * Capture a timecounter delta on the current timecounter and if
+	 * changing timecounters, a counter value from the new timecounter.
+	 * Update the offset fields accordingly.
+	 */
+	delta = tc_delta(th);
+	if (th->th_counter != timecounter)
+		ncount = timecounter->tc_get_timecount(timecounter);
+	else
+		ncount = 0;
+#ifdef FFCLOCK
+	ffclock_windup(delta);
+#endif
+	th->th_offset_count += delta;
+	th->th_offset_count &= th->th_counter->tc_counter_mask;
+	while (delta > th->th_counter->tc_frequency) {
+		/* Eat complete unadjusted seconds. */
+		delta -= th->th_counter->tc_frequency;
+		th->th_offset.sec++;
+	}
+	if ((delta > th->th_counter->tc_frequency / 2) &&
+	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
+		/* The product th_scale * delta just barely overflows. */
+		th->th_offset.sec++;
+	}
+	bintime_addx(&th->th_offset, th->th_scale * delta);
+
+	/*
+	 * Hardware latching timecounters may not generate interrupts on
+	 * PPS events, so instead we poll them.  There is a finite risk that
+	 * the hardware might capture a count which is later than the one we
+	 * got above, and therefore possibly in the next NTP second which might
+	 * have a different rate than the current NTP second.  It doesn't
+	 * matter in practice.
+	 */
+	if (tho->th_counter->tc_poll_pps)
+		tho->th_counter->tc_poll_pps(tho->th_counter);
+
+	/*
+	 * Deal with NTP second processing.  The for loop normally
+	 * iterates at most once, but in extreme situations it might
+	 * keep NTP sane if timeouts are not run for several seconds.
+	 * At boot, the time step can be large when the TOD hardware
+	 * has been read, so on really large steps, we call
+	 * ntp_update_second only twice.  We need to call it twice in
+	 * case we missed a leap second.
+	 */
+	bt = th->th_offset;
+	bintime_add(&bt, &boottimebin);
+	i = bt.sec - tho->th_microtime.tv_sec;
+	if (i > LARGE_STEP)
+		i = 2;
+	for (; i > 0; i--) {
+		t = bt.sec;
+		ntp_update_second(&th->th_adjustment, &bt.sec);
+		if (bt.sec != t)
+			boottimebin.sec += bt.sec - t;
+	}
+	/* Update the UTC timestamps used by the get*() functions. */
+	/* XXX shouldn't do this here.  Should force non-`get' versions. */
+	bintime2timeval(&bt, &th->th_microtime);
+	bintime2timespec(&bt, &th->th_nanotime);
+
+	/* Now is a good time to change timecounters. */
+	if (th->th_counter != timecounter) {
+#ifndef __arm__
+		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
+			cpu_disable_c2_sleep++;
+		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
+			cpu_disable_c2_sleep--;
+#endif
+		th->th_counter = timecounter;
+		th->th_offset_count = ncount;
+		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
+		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
+#ifdef FFCLOCK
+		ffclock_change_tc(th);
+#endif
+	}
+
+	/*-
+	 * Recalculate the scaling factor.  We want the number of 1/2^64
+	 * fractions of a second per period of the hardware counter, taking
+	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
+	 * processing provides us with.
+	 *
+	 * The th_adjustment is nanoseconds per second with 32 bit binary
+	 * fraction and we want 64 bit binary fraction of second:
+	 *
+	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
+	 *
+	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
+	 * we can only multiply by about 850 without overflowing, that
+	 * leaves no suitably precise fractions for multiply before divide.
+	 *
+	 * Divide before multiply with a fraction of 2199/512 results in a
+	 * systematic undercompensation of 10PPM of th_adjustment.  On a
+	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
+ 	 *
+	 * We happily sacrifice the lowest of the 64 bits of our result
+	 * to the goddess of code clarity.
+	 *
+	 */
+	scale = (uint64_t)1 << 63;
+	scale += (th->th_adjustment / 1024) * 2199;
+	scale /= th->th_counter->tc_frequency;
+	th->th_scale = scale * 2;
+
+	/*
+	 * Now that the struct timehands is again consistent, set the new
+	 * generation number, making sure to not make it zero.
+	 */
+	if (++ogen == 0)
+		ogen = 1;
+	th->th_generation = ogen;
+
+	/* Go live with the new struct timehands. */
+#ifdef FFCLOCK
+	switch (sysclock_active) {
+	case SYSCLOCK_FBCK:
+#endif
+		time_second = th->th_microtime.tv_sec;
+		time_uptime = th->th_offset.sec;
+#ifdef FFCLOCK
+		break;
+	case SYSCLOCK_FFWD:
+		time_second = fftimehands->tick_time_lerp.sec;
+		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
+		break;
+	}
+#endif
+
+	timehands = th;
+	timekeep_push_vdso();
+}
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
+{
+	char newname[32];
+	struct timecounter *newtc, *tc;
+	int error;
+
+	tc = timecounter;
+	strlcpy(newname, tc->tc_name, sizeof(newname));
+
+	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
+	if (error != 0 || req->newptr == NULL ||
+	    strcmp(newname, tc->tc_name) == 0)
+		return (error);
+	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
+		if (strcmp(newname, newtc->tc_name) != 0)
+			continue;
+
+		/* Warm up new timecounter. */
+		(void)newtc->tc_get_timecount(newtc);
+		(void)newtc->tc_get_timecount(newtc);
+
+		timecounter = newtc;
+
+		/*
+		 * The vdso timehands update is deferred until the next
+		 * 'tc_windup()'.
+		 *
+		 * This is prudent given that 'timekeep_push_vdso()' does not
+		 * use any locking and that it can be called in hard interrupt
+		 * context via 'tc_windup()'.
+		 */
+		return (0);
+	}
+	return (EINVAL);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
+    0, 0, sysctl_kern_timecounter_hardware, "A",
+    "Timecounter hardware selected");
+
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
+{
+	char buf[32], *spc;
+	struct timecounter *tc;
+	int error;
+
+	spc = "";
+	error = 0;
+	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
+		sprintf(buf, "%s%s(%d)",
+		    spc, tc->tc_name, tc->tc_quality);
+		error = SYSCTL_OUT(req, buf, strlen(buf));
+		spc = " ";
+	}
+	return (error);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
+    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
+
+/*
+ * RFC 2783 PPS-API implementation.
+ */
+
+static int
+pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
+{
+	int err, timo;
+	pps_seq_t aseq, cseq;
+	struct timeval tv;
+
+	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
+		return (EINVAL);
+
+	/*
+	 * If no timeout is requested, immediately return whatever values were
+	 * most recently captured.  If timeout seconds is -1, that's a request
+	 * to block without a timeout.  WITNESS won't let us sleep forever
+	 * without a lock (we really don't need a lock), so just repeatedly
+	 * sleep a long time.
+	 */
+	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
+		if (fapi->timeout.tv_sec == -1)
+			timo = 0x7fffffff;
+		else {
+			tv.tv_sec = fapi->timeout.tv_sec;
+			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
+			timo = tvtohz(&tv);
+		}
+		aseq = pps->ppsinfo.assert_sequence;
+		cseq = pps->ppsinfo.clear_sequence;
+		while (aseq == pps->ppsinfo.assert_sequence &&
+		    cseq == pps->ppsinfo.clear_sequence) {
+			err = tsleep(pps, PCATCH, "ppsfch", timo);
+			if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
+				continue;
+			} else if (err != 0) {
+				return (err);
+			}
+		}
+	}
+
+	pps->ppsinfo.current_mode = pps->ppsparam.mode;
+	fapi->pps_info_buf = pps->ppsinfo;
+
+	return (0);
+}
+
+int
+pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
+{
+	pps_params_t *app;
+	struct pps_fetch_args *fapi;
+#ifdef FFCLOCK
+	struct pps_fetch_ffc_args *fapi_ffc;
+#endif
+#ifdef PPS_SYNC
+	struct pps_kcbind_args *kapi;
+#endif
+
+	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
+	switch (cmd) {
+	case PPS_IOC_CREATE:
+		return (0);
+	case PPS_IOC_DESTROY:
+		return (0);
+	case PPS_IOC_SETPARAMS:
+		app = (pps_params_t *)data;
+		if (app->mode & ~pps->ppscap)
+			return (EINVAL);
+#ifdef FFCLOCK
+		/* Ensure only a single clock is selected for ffc timestamp. */
+		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
+			return (EINVAL);
+#endif
+		pps->ppsparam = *app;
+		return (0);
+	case PPS_IOC_GETPARAMS:
+		app = (pps_params_t *)data;
+		*app = pps->ppsparam;
+		app->api_version = PPS_API_VERS_1;
+		return (0);
+	case PPS_IOC_GETCAP:
+		*(int*)data = pps->ppscap;
+		return (0);
+	case PPS_IOC_FETCH:
+		fapi = (struct pps_fetch_args *)data;
+		return (pps_fetch(fapi, pps));
+#ifdef FFCLOCK
+	case PPS_IOC_FETCH_FFCOUNTER:
+		fapi_ffc = (struct pps_fetch_ffc_args *)data;
+		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
+		    PPS_TSFMT_TSPEC)
+			return (EINVAL);
+		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
+			return (EOPNOTSUPP);
+		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
+		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
+		/* Overwrite timestamps if feedback clock selected. */
+		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
+		case PPS_TSCLK_FBCK:
+			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
+			    pps->ppsinfo.assert_timestamp;
+			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
+			    pps->ppsinfo.clear_timestamp;
+			break;
+		case PPS_TSCLK_FFWD:
+			break;
+		default:
+			break;
+		}
+		return (0);
+#endif /* FFCLOCK */
+	case PPS_IOC_KCBIND:
+#ifdef PPS_SYNC
+		kapi = (struct pps_kcbind_args *)data;
+		/* XXX Only root should be able to do this */
+		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
+			return (EINVAL);
+		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
+			return (EINVAL);
+		if (kapi->edge & ~pps->ppscap)
+			return (EINVAL);
+		pps->kcmode = kapi->edge;
+		return (0);
+#else
+		return (EOPNOTSUPP);
+#endif
+	default:
+		return (ENOIOCTL);
+	}
+}
+
+void
+pps_init(struct pps_state *pps)
+{
+	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
+	if (pps->ppscap & PPS_CAPTUREASSERT)
+		pps->ppscap |= PPS_OFFSETASSERT;
+	if (pps->ppscap & PPS_CAPTURECLEAR)
+		pps->ppscap |= PPS_OFFSETCLEAR;
+#ifdef FFCLOCK
+	pps->ppscap |= PPS_TSCLK_MASK;
+#endif
+}
+
+void
+pps_capture(struct pps_state *pps)
+{
+	struct timehands *th;
+
+	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
+	th = timehands;
+	pps->capgen = th->th_generation;
+	pps->capth = th;
+#ifdef FFCLOCK
+	pps->capffth = fftimehands;
+#endif
+	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
+	if (pps->capgen != th->th_generation)
+		pps->capgen = 0;
+}
+
+void
+pps_event(struct pps_state *pps, int event)
+{
+	struct bintime bt;
+	struct timespec ts, *tsp, *osp;
+	u_int tcount, *pcount;
+	int foff, fhard;
+	pps_seq_t *pseq;
+#ifdef FFCLOCK
+	struct timespec *tsp_ffc;
+	pps_seq_t *pseq_ffc;
+	ffcounter *ffcount;
+#endif
+
+	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
+	/* If the timecounter was wound up underneath us, bail out. */
+	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
+		return;
+
+	/* Things would be easier with arrays. */
+	if (event == PPS_CAPTUREASSERT) {
+		tsp = &pps->ppsinfo.assert_timestamp;
+		osp = &pps->ppsparam.assert_offset;
+		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
+		fhard = pps->kcmode & PPS_CAPTUREASSERT;
+		pcount = &pps->ppscount[0];
+		pseq = &pps->ppsinfo.assert_sequence;
+#ifdef FFCLOCK
+		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
+		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
+		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
+#endif
+	} else {
+		tsp = &pps->ppsinfo.clear_timestamp;
+		osp = &pps->ppsparam.clear_offset;
+		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
+		fhard = pps->kcmode & PPS_CAPTURECLEAR;
+		pcount = &pps->ppscount[1];
+		pseq = &pps->ppsinfo.clear_sequence;
+#ifdef FFCLOCK
+		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
+		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
+		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
+#endif
+	}
+
+	/*
+	 * If the timecounter changed, we cannot compare the count values, so
+	 * we have to drop the rest of the PPS-stuff until the next event.
+	 */
+	if (pps->ppstc != pps->capth->th_counter) {
+		pps->ppstc = pps->capth->th_counter;
+		*pcount = pps->capcount;
+		pps->ppscount[2] = pps->capcount;
+		return;
+	}
+
+	/* Convert the count to a timespec. */
+	tcount = pps->capcount - pps->capth->th_offset_count;
+	tcount &= pps->capth->th_counter->tc_counter_mask;
+	bt = pps->capth->th_offset;
+	bintime_addx(&bt, pps->capth->th_scale * tcount);
+	bintime_add(&bt, &boottimebin);
+	bintime2timespec(&bt, &ts);
+
+	/* If the timecounter was wound up underneath us, bail out. */
+	if (pps->capgen != pps->capth->th_generation)
+		return;
+
+	*pcount = pps->capcount;
+	(*pseq)++;
+	*tsp = ts;
+
+	if (foff) {
+		timespecadd(tsp, osp);
+		if (tsp->tv_nsec < 0) {
+			tsp->tv_nsec += 1000000000;
+			tsp->tv_sec -= 1;
+		}
+	}
+
+#ifdef FFCLOCK
+	*ffcount = pps->capffth->tick_ffcount + tcount;
+	bt = pps->capffth->tick_time;
+	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
+	bintime_add(&bt, &pps->capffth->tick_time);
+	bintime2timespec(&bt, &ts);
+	(*pseq_ffc)++;
+	*tsp_ffc = ts;
+#endif
+
+#ifdef PPS_SYNC
+	if (fhard) {
+		uint64_t scale;
+
+		/*
+		 * Feed the NTP PLL/FLL.
+		 * The FLL wants to know how many (hardware) nanoseconds
+		 * elapsed since the previous event.
+		 */
+		tcount = pps->capcount - pps->ppscount[2];
+		pps->ppscount[2] = pps->capcount;
+		tcount &= pps->capth->th_counter->tc_counter_mask;
+		scale = (uint64_t)1 << 63;
+		scale /= pps->capth->th_counter->tc_frequency;
+		scale *= 2;
+		bt.sec = 0;
+		bt.frac = 0;
+		bintime_addx(&bt, scale * tcount);
+		bintime2timespec(&bt, &ts);
+		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
+	}
+#endif
+
+	/* Wakeup anyone sleeping in pps_fetch().  */
+	wakeup(pps);
+}
+
+/*
+ * Timecounters need to be updated every so often to prevent the hardware
+ * counter from overflowing.  Updating also recalculates the cached values
+ * used by the get*() family of functions, so their precision depends on
+ * the update frequency.
+ */
+
+static int tc_tick;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
+    "Approximate number of hardclock ticks in a millisecond");
+
+void
+tc_ticktock(int cnt)
+{
+	static int count;
+
+	count += cnt;
+	if (count < tc_tick)
+		return;
+	count = 0;
+	tc_windup();
+}
+
+static void __inline
+tc_adjprecision(void)
+{
+	int t;
+
+	if (tc_timepercentage > 0) {
+		t = (99 + tc_timepercentage) / tc_timepercentage;
+		tc_precexp = fls(t + (t >> 1)) - 1;
+		FREQ2BT(hz / tc_tick, &bt_timethreshold);
+		FREQ2BT(hz, &bt_tickthreshold);
+		bintime_shift(&bt_timethreshold, tc_precexp);
+		bintime_shift(&bt_tickthreshold, tc_precexp);
+	} else {
+		tc_precexp = 31;
+		bt_timethreshold.sec = INT_MAX;
+		bt_timethreshold.frac = ~(uint64_t)0;
+		bt_tickthreshold = bt_timethreshold;
+	}
+	sbt_timethreshold = bttosbt(bt_timethreshold);
+	sbt_tickthreshold = bttosbt(bt_tickthreshold);
+}
+
+static int
+sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
+{
+	int error, val;
+
+	val = tc_timepercentage;
+	error = sysctl_handle_int(oidp, &val, 0, req);
+	if (error != 0 || req->newptr == NULL)
+		return (error);
+	tc_timepercentage = val;
+	if (cold)
+		goto done;
+	tc_adjprecision();
+done:
+	return (0);
+}
+
+static void
+inittimecounter(void *dummy)
+{
+	u_int p;
+	int tick_rate;
+
+	/*
+	 * Set the initial timeout to
+	 * max(1, <approx. number of hardclock ticks in a millisecond>).
+	 * People should probably not use the sysctl to set the timeout
+	 * to smaller than its inital value, since that value is the
+	 * smallest reasonable one.  If they want better timestamps they
+	 * should use the non-"get"* functions.
+	 */
+	if (hz > 1000)
+		tc_tick = (hz + 500) / 1000;
+	else
+		tc_tick = 1;
+	tc_adjprecision();
+	FREQ2BT(hz, &tick_bt);
+	tick_sbt = bttosbt(tick_bt);
+	tick_rate = hz / tc_tick;
+	FREQ2BT(tick_rate, &tc_tick_bt);
+	tc_tick_sbt = bttosbt(tc_tick_bt);
+	p = (tc_tick * 1000000) / hz;
+	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
+
+#ifdef FFCLOCK
+	ffclock_init();
+#endif
+	/* warm up new timecounter (again) and get rolling. */
+	(void)timecounter->tc_get_timecount(timecounter);
+	(void)timecounter->tc_get_timecount(timecounter);
+	tc_windup();
+}
+
+SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
+
+/* Cpu tick handling -------------------------------------------------*/
+
+static int cpu_tick_variable;
+static uint64_t	cpu_tick_frequency;
+
+static uint64_t
+tc_cpu_ticks(void)
+{
+	static uint64_t base;
+	static unsigned last;
+	unsigned u;
+	struct timecounter *tc;
+
+	tc = timehands->th_counter;
+	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
+	if (u < last)
+		base += (uint64_t)tc->tc_counter_mask + 1;
+	last = u;
+	return (u + base);
+}
+
+void
+cpu_tick_calibration(void)
+{
+	static time_t last_calib;
+
+	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
+		cpu_tick_calibrate(0);
+		last_calib = time_uptime;
+	}
+}
+
+/*
+ * This function gets called every 16 seconds on only one designated
+ * CPU in the system from hardclock() via cpu_tick_calibration()().
+ *
+ * Whenever the real time clock is stepped we get called with reset=1
+ * to make sure we handle suspend/resume and similar events correctly.
+ */
+
+static void
+cpu_tick_calibrate(int reset)
+{
+	static uint64_t c_last;
+	uint64_t c_this, c_delta;
+	static struct bintime  t_last;
+	struct bintime t_this, t_delta;
+	uint32_t divi;
+
+	if (reset) {
+		/* The clock was stepped, abort & reset */
+		t_last.sec = 0;
+		return;
+	}
+
+	/* we don't calibrate fixed rate cputicks */
+	if (!cpu_tick_variable)
+		return;
+
+	getbinuptime(&t_this);
+	c_this = cpu_ticks();
+	if (t_last.sec != 0) {
+		c_delta = c_this - c_last;
+		t_delta = t_this;
+		bintime_sub(&t_delta, &t_last);
+		/*
+		 * Headroom:
+		 * 	2^(64-20) / 16[s] =
+		 * 	2^(44) / 16[s] =
+		 * 	17.592.186.044.416 / 16 =
+		 * 	1.099.511.627.776 [Hz]
+		 */
+		divi = t_delta.sec << 20;
+		divi |= t_delta.frac >> (64 - 20);
+		c_delta <<= 20;
+		c_delta /= divi;
+		if (c_delta > cpu_tick_frequency) {
+			if (0 && bootverbose)
+				printf("cpu_tick increased to %ju Hz\n",
+				    c_delta);
+			cpu_tick_frequency = c_delta;
+		}
+	}
+	c_last = c_this;
+	t_last = t_this;
+}
+
+void
+set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
+{
+
+	if (func == NULL) {
+		cpu_ticks = tc_cpu_ticks;
+	} else {
+		cpu_tick_frequency = freq;
+		cpu_tick_variable = var;
+		cpu_ticks = func;
+	}
+}
+
+uint64_t
+cpu_tickrate(void)
+{
+
+	if (cpu_ticks == tc_cpu_ticks) 
+		return (tc_getfrequency());
+	return (cpu_tick_frequency);
+}
+
+/*
+ * We need to be slightly careful converting cputicks to microseconds.
+ * There is plenty of margin in 64 bits of microseconds (half a million
+ * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
+ * before divide conversion (to retain precision) we find that the
+ * margin shrinks to 1.5 hours (one millionth of 146y).
+ * With a three prong approach we never lose significant bits, no
+ * matter what the cputick rate and length of timeinterval is.
+ */
+
+uint64_t
+cputick2usec(uint64_t tick)
+{
+
+	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
+		return (tick / (cpu_tickrate() / 1000000LL));
+	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
+		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
+	else
+		return ((tick * 1000000LL) / cpu_tickrate());
+}
+
+cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
+
+static int vdso_th_enable = 1;
+static int
+sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
+{
+	int old_vdso_th_enable, error;
+
+	old_vdso_th_enable = vdso_th_enable;
+	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
+	if (error != 0)
+		return (error);
+	vdso_th_enable = old_vdso_th_enable;
+	return (0);
+}
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
+    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
+    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
+
+uint32_t
+tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
+{
+	struct timehands *th;
+	uint32_t enabled;
+
+	th = timehands;
+	vdso_th->th_algo = VDSO_TH_ALGO_1;
+	vdso_th->th_scale = th->th_scale;
+	vdso_th->th_offset_count = th->th_offset_count;
+	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
+	vdso_th->th_offset = th->th_offset;
+	vdso_th->th_boottime = boottimebin;
+	enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
+	if (!vdso_th_enable)
+		enabled = 0;
+	return (enabled);
+}
+
+#ifdef COMPAT_FREEBSD32
+uint32_t
+tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
+{
+	struct timehands *th;
+	uint32_t enabled;
+
+	th = timehands;
+	vdso_th32->th_algo = VDSO_TH_ALGO_1;
+	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
+	vdso_th32->th_offset_count = th->th_offset_count;
+	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
+	vdso_th32->th_offset.sec = th->th_offset.sec;
+	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
+	vdso_th32->th_boottime.sec = boottimebin.sec;
+	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
+	enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
+	if (!vdso_th_enable)
+		enabled = 0;
+	return (enabled);
+}
+#endif
diff --git a/cpukit/score/src/opt_compat.h b/cpukit/score/src/opt_compat.h
new file mode 100644
index 0000000..e69de29
diff --git a/cpukit/score/src/opt_ffclock.h b/cpukit/score/src/opt_ffclock.h
new file mode 100644
index 0000000..e69de29
diff --git a/cpukit/score/src/opt_ntp.h b/cpukit/score/src/opt_ntp.h
new file mode 100644
index 0000000..e69de29
-- 
1.8.4.5



More information about the devel mailing list